Solving Continuous Decay Problems when given a half-life.

These techniques give you the most accurate answers for problems involving population growth, radioactive decay or anywhere you find the word “continuous” or “continuously.”

1. Begin with the formula: \(a = pe^{rt} \)

 Where,
 - \(a \) = amount at time \(t \)
 - \(p \) = principal (starting amount)
 - \(e \) = “Euler’s number” a constant 2.718…..
 - \(r \) = rate in decimal form (i.e. 9% = 0.09)
 - \(t \) = time (in years, hours, days…)

2. Find the rate:

 No matter what your starting amount is, a half-life is the amount of time it takes until half of that amount remains. So you can leave out the starting amount (\(p \)) and simply set the left side of the equation to 0.5. 2 examples:

 A) half-life is 6 hours.

 Your equation is \(0.5 = e^{6r} \)

 B) half-life is 10,000 years

 Your equation is \(0.5 = e^{10,000r} \)

 Solve for \(r \) using natural logs:

 \[
 \begin{align*}
 0.5 &= e^{6r} \\
 \ln 0.5 &= \ln e^{6r} \\
 \ln 0.5 &= 6r \\
 \frac{\ln 0.5}{6} &= r \\
 -0.1155 &= r
 \end{align*}
 \]

 \[
 \begin{align*}
 0.5 &= e^{10,000r} \\
 \ln 0.5 &= \ln e^{10,000r} \\
 \ln 0.5 &= 10,000r \\
 \frac{\ln 0.5}{10,000} &= r \\
 -0.0000693 &= r
 \end{align*}
 \]

3. Plug the rate in for \(r \) and use the resulting equation for any further questions:

 A) \(a = pe^{-0.1155t} \)

 B) \(a = pe^{-0.0000693t} \)
4. Example questions:

A) A medicine has a half-life of 6 hours. If a patient is given 600 mg at noon, at what time do they have 100 mg remaining in their bloodstream?

\[a = pe^{-0.1155t} \]
\[100 = 600e^{-0.1155t} \]
\[0.16 = e^{-0.1155t} \]
\[\ln 0.16 = \ln e^{-0.1155t} \]
\[\ln 0.16 = -0.1155t \cdot \ln e \]
\[\ln 0.16 = -0.1155t \]
\[\frac{\ln 0.16}{-0.1155} = t \]
\[15.5 = t \]

Answer is 15.5 hours after noon; 3:30 AM the next morning.

B) Cobalt 121 is a radioactive substance with a half-life of 10,000 years. A geologist finds a deposit of Cobalt 121 which weighs 1.5 grams. He estimates the original deposit contained 20 grams of Cobalt 121. How old is the deposit?

\[a = pe^{-0.0000693t} \]
\[1.5 = 20e^{-0.0000693t} \]
\[0.075 = e^{-0.0000693t} \]
\[\ln 0.075 = \ln e^{-0.0000693t} \]
\[\ln 0.075 = -0.0000693t \cdot \ln e \]
\[\ln 0.075 = -0.0000693t \]
\[\frac{\ln 0.075}{-0.0000693} = t \]
\[37,377.59 = t \]

The deposit of Cobalt 121 is 37,377 years old.

5. Other examples involving continuous growth:

a) You put $2000 into a savings account that pays 6% interest, compounded continuously. How much will be in the account in 13 years?

\[a = 2000e^{0.06 \cdot 13} \]
\[a = 2000e^{0.0613} \]
\[a = 4,362.94 \]

The account will hold $4,362.94 in 13 years

b) In how long will the account be worth $100,000?

\[100,000 = 2000e^{0.06t} \]
\[50 = e^{0.06t} \]
\[\ln 50 = \ln e^{0.06t} \]
\[\ln 50 = 0.06t \cdot \ln e \]
\[\ln 50 = 0.06t \]
\[\frac{\ln 50}{0.06} = t \]
\[65.2 = t \]

The account reaches $100,000 in approx. 65 years.